Riprap incipient motion for overtopping flows with machine learning models
نویسندگان
چکیده
منابع مشابه
Stabilization of Angular-Shaped Riprap under Overtopping Flows
Riprap is mostly used to prevent erosion by flows down the steep slopes in river engineering. A total of 53 stability tests performed on angular riprap with a median stone size ranging from 15 to 278 mm and slope ranging from 1 to 40% are used in this study. The existing equations for the prediction of medium size of angular stones are checked for their accuracy using the available data. Predic...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملIdentifying incipient dementia individuals using machine learning and amyloid imaging
Identifying individuals destined to develop Alzheimer's dementia within time frames acceptable for clinical trials constitutes an important challenge to design studies to test emerging disease-modifying therapies. Although amyloid-β protein is the core pathologic feature of Alzheimer's disease, biomarkers of neuronal degeneration are the only ones believed to provide satisfactory predictions of...
متن کاملSemantic models for machine learning
In this thesis we present approaches to the creation and usage of semantic models by the analysis of the data spread in the feature space. We aim to introduce the general notion of using feature selection techniques in machine learning applications. The applied approaches obtain new feature directions on data, such that machine learning applications would show an increase in performance. We rev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Hydroinformatics
سال: 2020
ISSN: 1464-7141,1465-1734
DOI: 10.2166/hydro.2020.129